Adding expressiveness to unit selection speech synthesis and to numerical voice production
Lectura Tesis Sr. Marc Freixes
El habla es una de las formas de comunicación más naturales y directas entre seres humanos, ya que codifica un mensaje y también claves paralingüísticas sobre el estado emocional del locutor, el tono o su intención, convirtiéndose así en fundamental en la consecución de una interacción humano-máquina (HCI) más natural. En este contexto, la generación de habla expresiva para el canal de salida de HCI es un elemento clave en el desarrollo de tecnologías asistenciales o asistentes personales entre otras aplicaciones.
El habla sintética puede ser generada a partir de habla gravada utilizando métodos basados en corpus como la selección de unidades (US), que pueden conseguir resultados de alta calidad, pero de expresividad restringida a la propia del corpus. A fin de mejorar la calidad de la salida de la síntesis, la tendencia actual es construir bases de datos de voz cada vez más grandes, siguiendo especialmente la aproximación de síntesis llamada End-to-End basada en técnicas de aprendizaje profundo. Sin embargo, gravar corpus ad-hoc para cada estilo expresivo deseado puede ser extremadamente costoso o incluso inviable si el locutor no es capaz de realizar adecuadamente los estilos requeridos para una aplicación dada (ej: canto en el dominio de la narración de cuentos). Alternativamente, nuevos métodos basados en la física de la producción de voz se han desarrollado en la última década gracias al incremento en la potencia computacional. Por ejemplo, vocales o diptongos pueden ser obtenidos utilizando el método de elementos finitos (FEM) para simular la propagación de ondas acústicas a través de una geometría 3D realista del tracto vocal obtenida a partir de resonancias magnéticas (MRI). Sin embargo, dado que los principales esfuerzos en estos métodos de producción numérica de voz se han focalizado en la mejora del modelado del proceso de generación de voz, hasta ahora se ha prestado poca atención a su expresividad. Además, la colección de datos para estas simulaciones es muy costosa, además de requerir un largo postproceso manual como el necesario para extraer geometrías 3D del tracto vocal a partir de MRI.
El objetivo de la tesis es añadir expresividad en un sistema que genera voz neutra, sin tener que adquirir datos expresivos del locutor original. Per un lado, se añaden capacidades expresivas a un sistema de conversión de texto a habla basado en selección de unidades (US-TTS) dotado de un corpus de voz neutra, para abordar necesidades específicas y concretas en el ámbito de la narración de cuentos, como son la voz cantada o situaciones de suspense. Para ello, la voz se parametriza utilizando un modelo harmónico y se transforma al estilo expresivo deseado de acuerdo con un sistema experto. Se presenta una primera aproximación, centrada en la síntesis de suspense creciente para la narración de cuentos, y se demuestra su viabilidad en cuanto a naturalidad y calidad de narración de cuentos. También se añaden capacidades de canto al sistema US-TTS mediante la integración de módulos de transformación de habla a voz cantada en el pipeline del TTS, y la incorporación de un módulo de generación de prosodia expresiva que permite al módulo de US seleccionar unidades más cercanas a la prosodia cantada obtenida a partir de la partitura de entrada. Esto resulta en un framework de síntesis de conversión de texto a habla y voz cantada basado en selección de unidades (US-TTS&S) que puede generar voz hablada y cantada a partir del mismo pequeño corpus de voz neutra (~2.6h). De acuerdo con los resultados objetivos, la estrategia de US guiada por la partitura permite reducir los factores de modificación de pitch requeridos para producir voz cantada a partir de las unidades de voz hablada seleccionadas, pero en cambio tiene una efectividad limitada con los factores de modificación de duraciones debido a la corta duración de las vocales habladas neutras. Los resultados de las pruebas perceptivas muestran que, a pesar de obtener una naturalidad obviamente inferior a la ofrecida por un sintetizador profesional de voz cantada, el framework puede abordar necesidades puntuales de voz cantada para la síntesis de narración de cuentos con una calidad razonable.
La incorporación de expresividad se investiga también en la simulación numérica 3D de vocales basada en FEM mediante modificaciones en las señales de excitación glotal utilizando una aproximación fuente-filtro de producción de voz. Estas señales se generan utilizando un modelo Liljencrants-Fant (LF) controlado con el parámetro de forma del pulso Rd, que permite explorar el continuo de fonación laxo-tenso además del rango de frecuencias fundamentales, F0, de la voz hablada. Se analiza la contribución de la fuente glotal a los modos de alto orden en la síntesis FEM de las vocales cardinales [a], [i] y [u] mediante la comparación de los valores de energía de alta frecuencia (HFE) obtenidos con geometrías realistas y simplificadas del tracto vocal. Las simulaciones indican que los modos de alto orden se prevén perceptivamente relevantes de acuerdo con valores de referencia de la literatura, particularmente para fonaciones tensas y/o F0s altas. En cambio, para vocales con una fonación laxa y/o F0s bajas los niveles de HFE pueden resultar inaudibles, especialmente si no hay ruido de aspiración en la fuente glotal. Después de este estudio preliminar, se han analizado las características de excitación de vocales alegres y agresivas de un corpus paralelo de voz en castellano con el objetivo de incorporar estos estilos expresivos de voz tensa en la simulación numérica de voz. Para ello, se ha usado el vocoder GlottDNN para analizar variaciones de F0 y pendiente espectral relacionadas con la excitación glotal en vocales [a]. Estas variaciones se mapean mediante la comparación con vocales sintéticas en valores de F0 y Rd para simular vocales que se asemejen a los estilos alegre y agresivo. Los resultados muestran que es necesario incrementar la F0 y disminuir la Rd respecto la voz neutra, con variaciones mayores para alegre que para agresivo, especialmente para vocales acentuadas.
Los resultados conseguidos en las investigaciones realizadas validan la posibilidad de añadir expresividad a la síntesis basada en corpus US-TTS y a la simulación numérica de voz basada en FEM. Sin embargo, hay margen de mejora. Por ejemplo, la estrategia aplicada a la producción numérica de voz se podría mejorar estudiando y desarrollando métodos de filtrado inverso, así como incorporando modificaciones del tracto vocal, mientras que el framework US-TTS&S desarrollado se podría beneficiar de los avances en técnicas de transformación de voz incluyendo transformaciones de la calidad de la voz, aprovechando la experiencia adquirida en la simulación numérica de vocales expresivas.