Transport Layer solution for bulk data transfers over Heterogeneous Long Fat Networks in Next Generation Networks
Esta tesis por compendio centra sus contribuciones en el aprendizaje e innovación de las Redes de Nueva Generación. Es por ello que se proponen distintas contribuciones en diferentes ámbitos (Smart Cities, Smart Grids, Smart Campus, Smart Learning, Media, eHealth, Industria 4.0 entre otros) mediante la aplicación y combinación de diferentes disciplinas (Internet of Things, Building Information Modeling, Cloud Storage, Ciberseguridad, Big Data, Internet del Futuro, Transformación Digital).
Concretamente, se detalla la monitorización sostenible del confort en el Smart Campus, la que se podría considerar mi aportación más representativa dentro de la conceptualización de Redes de Nueva Generación. Dentro de este innovador concepto de monitorización se integran diferentes disciplinas, para poder ofrecer información sobre el nivel de confort de las personas. Esta investigación demuestra el recorrido que existe en la transformación digital de los sectores tradicionales y las NGNs.
Durante este largo aprendizaje sobre las NGN a través de las diferentes investigaciones, se pudo observar una problemática que afectaba de manera transversal a los diferentes campos de aplicación de las NGNs y que ésta podía tener una afectación en estos sectores. Esta problemática consiste en el bajo rendimiento durante el intercambio de grandes volúmenes de datos sobre redes con gran capacidad de ancho de banda y remotamente separadas geográficamente, conocidas como redes elefante, o Long Fat Networks (LFNs). Concretamente, esto afecta al caso de uso de intercambio de datos entre regiones Cloud (Cloud Data Data use case). Es por ello que se estudió este caso de uso y las diferentes alternativas a nivel de protocolos de transporte. Se estudian las diferentes problemáticas que sufren los protocolos y se observa por qué no son capaces de alcanzar rendimientos óptimos.
Debida a esta situación, se hipotetiza que la introducción de mecanismos que analizan las métricas de la red y que explotan eficientemente la capacidad de la misma mejoran el rendimiento de los protocolos de transporte sobre redes elefante heterogéneas durante el envío masivo de datos.
Primeramente, se diseña el Adaptative and Aggressive Transport Protocol (AATP), un protocolo de transporte adaptativo y eficiente con el objetivo maximizar el rendimiento sobre este tipo de redes elefante. El protocolo AATP se implementa y se prueba en un simulador de redes y un testbed bajo diferentes situaciones y condiciones para su validación.
Implementado y probado con éxito el protocolo AATP, se decide mejorar el propio protocolo, Enhanced-AATP, sobre redes elefante heterogéneas. Además, con tal de mejorar el comportamiento del protocolo, se mejora su sistema de fairness para el reparto justo de los recursos con otros flujos Enhanced-AATP. Esta evolución se implementa en el simulador de redes y se realizan una serie de pruebas.
Al finalizar esta tesis, se concluye que las Redes de Nueva Generación tienen mucho recorrido y muchas cosas a mejorar debido a la transformación digital de la sociedad y a la aparición de nueva tecnología disruptiva. Se confirma que la introducción de mecanismos específicos en la concepción y operación de los protocolos de transporte mejora el rendimiento de estos sobre redes elefante heterogéneas.